

H()(J'H() FIRE PROTECTION

Modern Trends of Fire Protection in Rolling Stock Warszawa, 18.05.2016

High-pressure water mist active firefighting systems; first testing experiences according to Italian Standard UNI 11565

Michele Barbagli (FOGTEC, Germany)

Contents

- Introduction FOGTEC
- Background UNI11565
- Testing experience
- Conclusions

Contents

- Introduction FOGTEC
- Background UNI11565
- Testing experience
- Conclusions

FOGTEC Fire Protection

Head Quarter in Cologne

Sales Office Nord, Hamburg Office Asia, Mumbai, India Office China, Shanghai, China Office Middle East, Riad Office South America, Sao Paulo

FOGTEC France, Paris FOGTEC Spain, Madrid FOGTEC Austria, Vienna

Stationary product range (Fixed Systems)

Tunnel product range (Tunnel Systems)

Eurotunnel F/UK

Dartford M25

Newcastle Tyne Crossing

FOGTEC Rail Systems

Rail Systems

- Head Office in Cologne
- Specialised on development and marketing for complete fire protection solutions in rolling stock applications
 - Fire detection / fire suppression
 - Add on products
- Development and manufacturing of plug-and-play modules
- Consulting work in regard to Fire Protection in Rolling Stock
- Full Time Rolling Stock Team

FOGTEC Rail Systems – Fire Detection Systems

- Centre and Control Units
- Smoke Detectors
- Smoke Aspiration Systems
- Temperature Detectors
- Linear Heat Detectors
- Gas Sensors
- Communication Interfaces

FOGTEC Rail Systems – Fire Fighting Systems

Gas Systems (Nitrogen)

Aerosol Systems

Water Mist Systems

Combinations

FOGTEC Rail Systems

Certifications

EN 15 085-2

Rail Systems - Customers - OEMs

ThyssenKrupp Transrapid

Rail Systems - Customers - Operators

Applications – Examples of References

Applications – Examples of References

Contents

- Introduction FOGTEC
- Background UNI11565
- Testing experience
- Conclusions

The Italian case

- > Italian Railway Network characterized by many tunnels:
 - RFI network has 339 tunnels longer than 1 km
 - The new High Speed Lines are characterized by a lot of km in tunnels (i.e.: the HS Florence – Bologna HS line length is 78,5, out of which 73 km in tunnels)
- → For that reason Italy requires safety measures in addition to the ordinary ones

These additional measures have been requested by a

Ministerial Decree:

DM 28/10/2005 «Safety in Railway Tunnels»

§1.5.7 «Extinguishing Fixed Systems»:

shall be installed in all vehicles suitable extinguishing fixed automatical systems...

An ANSF-led working group edited the new standard UNI11565 to set the technical requirements to fulfill the DM.

UNI 11565 was published on 18th December 2014

TITLE

Railway vehicles - Design, installation, validation and maintenance of fire detection and extinguishing systems for railway vehicles

General principles

UNI 11565:

Background is the ARGE guidelines, adapted to the specificity of the Italian market

Defined standard layouts:

- Single deck
- Double deck
- Compartment

Contents

- Introduction FOGTEC
- Background UNI11565
- Testing experience
- Conclusions

FOGTEC carried out the first testing according to the new norm with two well-known partner laboratories (LAPI in Italy and IFAB in Germany) under supervision of Italcertifer (Italy).

All layouts where tested based on the already proven FOGTEC-design for ARGE-based tests.

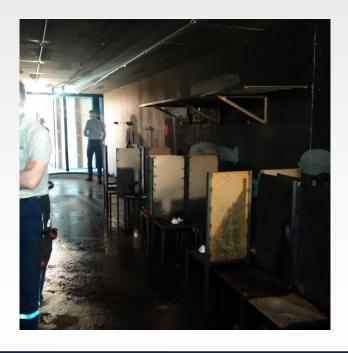
TEST OF THE FIRE EXTINGUISHING SYSTEM IN THE PASSENGER AREAS

- □Application: water mist systems
- □Scope: verify if, in case of fire, the survival conditions for passengers and train staff are maintained for at least 15 minutes from the extinguishing system activation.
- □The fire has to be «under control»: it is not required the complete fire suppression.

Two types of test:

Thermal test, characterized by burning of liquid or liquefied ignition source and using of non-railway conform and non-flame retardant materials for the surroundings, and «Luggage» test, characterized by burning of solid ignition source and using railway conform materials

Two types of nozzle positioning: under one nozzle and between the nozzles


All possible combinations must be tested

- Data to be recorded during the test:
- □Temperature: at the ceiling and at 1.6 m height above floor
- level and 1.5 m distance from the fire;
- □Oxigen concentration: at 1.6 m height above floor level or
- and 1.5 m distance from the fire
- □CO2, CO, HCN concentrations: at 1.6 m height above floor
- level and at 2 m distance from the fire
- □Visibility value: at 5 m from the fire and at 1.6 m height
- above floor level, only for statistical purposes

Main results in line with what already experienced with ARGE guidelines.
Some minor specific modifications needed.

Contents

- Introduction FOGTEC
- Background UNI11565
- Testing experience
- Conclusions

Conclusions

- The test scenarios are a good adaptation of the traditionally tested ARGE-layouts to the fleet types used in Italy
- The values to be measured are in line with ARGE experience
- The smaller and narrower volumes (shorter seat-spacing, higher seatbacks) do hide the fire strongly, so the fire fighting performace is reduced
- The visibility test is only for statistic purposes, but the validity and the target is still not clear

Conclusions

Pretty important difference, in comparison with previous experiences (ARGE):

Technical requirements are mainly related to <u>vehicle</u> <u>engineering</u>

So a significant shift of technical and homlogation responsibility <u>from the firefighting system manufacturer to the vehicle manufacturer.</u>

Conclusions

Pros	Contra
General layout not far away from previous experiences	Lack of research and testing experience to validate the models
Very complete and all-covering	In some parts lack of details with big space of interpretation
"Once for all" validation concept – avoidance of project specific testing	Some materials required are of difficult sourcing outside Italy (still links to UNI11170)
Very good applicability to the Italian rolling stock fleet	High increase of system costs due to complexity of requirements (vehicle manufacturer's burden)
Very clear in SIL requirements	Not available in English language

Any question...?

